

Welcome to Sitch Sensor’s documentation!

Version 4.0

Contents:

	Sensor Environment Variables

	SITCH Sensor Alert Types

	Understanding the Log Data Collected by Sitch
	cells.log

	geoip.log

	gps.log

	gsm_modem_channel.log

	health_check.log

	heartbeat.log

	kal_channel.log

	scanner.log

	sitch_alert.log

	sitch_init.log

	Event Lifecycle
	Ingestion

	Decomposition

	Correlation

	Transmission

	Reception

	Sensor Troubleshooting
	GSM modem device detection

	Found but undetected TTY

	GPS device not detected (U-Blox7)

	No events in Kibana

	Reference Images
	Connecting the USB TTY cable to the SIM 900 GSM modem

	SITCH Sensor Internal API
	AlertManager

	ArfcnCorrelator

	CgiCorrelator

	ConfigHelper

	Decomposer

	DeviceDetector

	FeedManager

	GeoCorrelator

	GeoIp

	GeoipDecomposer

	GpsDecomposer

	GpsListener

	GsmDecomposer

	GsmModem

	KalDecomposer

	LocationTool

	Logger

	Utility

Indices and tables

	Index

	Module Index

	Search Page

Sensor Environment Variables

The SITCH Sensor requires some environment variables to be set in order to operate.

	Environment Variable

	Purpose

	CGI_WHITELIST

	(Optional) List of trusted CGIs.

	FEED_RADIO_TARGETS

	(Optional) Radio types to target for feed ingestion.

Defaults to GSM

	FEED_URL_BASE

	(Optional) Base URL for Sensor feed.

Defaults to SITCH auto-built public feed

	GSM_MODEM_BAND

	Restrict GSM modem to this band. Options:
(EGSM_MODE | PGSM_MODE | DCS_MODE | GSM850_MODE |
PCS_MODE | EGSM_DCS_MODE | GSM850_PCS_MODE |
EGSM_PCS_MODE | ALL_BAND)

Defaults to ALL_BAND

	GSM_MODEM_PORT

	(Optional) Set the tty for the GSM modem. If unset,
the Sensor will attempt to auto-configure

	KAL_BAND

	Band for Kalibrate to scan. (GSM850 | GSM-R |
GSM900 | EGSM | DCS | PCS)

Defaults to GSM850

	KAL_GAIN

	Gain value for Kalibrate.

Defaults to 60

	KAL_THRESHOLD

	Alarm threshold for Kalibrate channel power level.

Defaults to 1000000

	LOCATION_NAME

	Name of the location for this sensor. No spaces.

	LOG_HOST

	Logstash endpoint.
Formatted like this: hostname:port

	MCC_LIST

	(Optional) List of Mobile Country Codes to ingest
from feed. List is comma-separated: 310,311,316

Defaults to 310,311,312,316

	MODE

	Set to clutch to go into a wait loop on start.
Useful for troubleshooting.

Defaults to full

	NO_FEED_UPDATE

	(Optional) If set, do not attempt to update the feed
on boot.

	STATE_LIST

	Comma-separated list of states for feed ingestion.
California and Texas would be: CA,TX

	VAULT_PATH

	Path to Logstash/Filebeat credentials in Vault.

Defaults to secret/client, which will work with
the demo environment.

	VAULT_TOKEN

	Client token used to retrieve credentials from Vault.

	VAULT_URL

	URL for Vault instance containing Logstash/Filebeat
credentials. Looks like: https://ser.ver.com:8200

	NO_FEED_UPDATE

	If set, do not attempt to update the feed on boot.

	GSM_MODEM_PORT

	(Optional) GSM modem USB-TTY port. This should
be autodetected and not need to be set.
Looks like: /dev/ttyUSB0
See: “Found but undetected TTY ” in the docs

	GPS_DEVICE_PORT

	(Optional) GPS device USB-TTY port. This should
be autodetected and not need to be set.
Looks like: /dev/ttyUSB0
See: “Found but undetected TTY ” in the docs

SITCH Sensor Alert Types

SITCH has a well-defined set of alerts, which are meant to be easy to parse
with a log management or SIEM system.

The alert log message format is defined here:
http://sensor.readthedocs.io/en/test/data.html#sitch-alert-log

The supported message types are listed here (in the __init__ function):
http://sensor.readthedocs.io/en/test/_modules/sitchlib/alert_manager.html#AlertManager

Understanding the Log Data Collected by Sitch

The following sections describe the data for the files found in ‘/data/sitch/log/’.

cells.log

{"scan_results": [
 {"cgi_str": "310:260:275:20000",
 "site_name": "sitch-site-testing",
 "bsic": "16",
 "mcc": "310",
 "rla": 0,
 "lac": "275",
 "band": "ALL_BAND",
 "feed_info": {
 "mcc": "310",
 "lon": "-122.464146",
 "lac": "275",
 "range": 325,
 "lat": "37.776641",
 "mnc": "260",
 "cellid": "20082"},
 "scan_location": "sitch-site-testing",
 "mnc": "260",
 "txp": 03,
 "distance": 534.3820159387475,
 "scan_finish": "2017-05-06T06:25:49.837957",
 "rxl": 20.0,
 "cell": 0,
 "scanner_public_ip": "1.1.1.1",
 "rxq": 0.0,
 "ta": 255,
 "cellid": "20082",
 "cgi_int": 31026027520082,
 "arfcn": 684}
 ...],
 "band": "ALL_BAND",
 "site_name": "sitch-site-testing",
 "platform": "Unspecified",
 "scan_start": "",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-06T06:25:49.837957",
 "scan_program": "gsm_modem"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

geoip.log

{"geometry":
 {"type": "Point",
 "coordinates": [-122, 37]
 },
 "scan_program": "geo_ip",
 "type": "Feature",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

This is in geojson structure, with the addition of an event_timestamp field.

gps.log

{"sat_time": "2017-05-02T06:26:08.000Z",
 "geometry": {
 "type": "Point",
 "coordinates":
 [-122, 37]
 },
 "time_drift": 0.006355733333333334,
 "sys_time": "2017-05-02T06:26:08.381344",
 "scan_program": "gpsd",
 "type": "Feature"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

gsm_modem_channel.log

{"cgi_str": "310:260:275:20082",
"site_name": "sitch-site-testing",
"bsic": "16",
"mcc": "310",
"rla": 8,
"lac": "275",
"band": "ALL_BAND",
"feed_info": {
 "mcc": "310",
 "lon": "-122.123",
 "lac": "275",
 "range": 325,
 "lat": "37.123",
 "mnc": "260",
 "cellid": "20082"
 },
"scan_location": "sitch-site-testing",
"mnc": "260",
"txp": 3,
"distance": 568.12345,
"scan_finish": "2017-05-16T02:21:23.901298",
"event_timestamp": "2017-05-16T02:21:23.901298",
"rxl": 24.0,
"cell": 0,
"scanner_public_ip": "1.1.1.1",
"rxq": 0.0,
"ta": 255,
"cellid": "20082",
"cgi_int": 31026027520082,
"arfcn": 684}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

health_check.log

{"cpu_times":
 {"iowait": 4694.23,
 "idle": 3089452.32,
 "user": 1786751.62,
 "system": 125489.34},
 "data_vol": 5.5,
 "root_vol": 5.5,
 "cpu_percent": [42.0, 53.0, 35.9, 38.0],
 "mem":
 {"swap_percent_used": 0.0,
 "free": 464707584},
 "queue_sizes": {
 "arfcn_correlator": 0,
 "geo_correlator": 0,
 "scan_results": 0,
 "cgi_correlator": 0},
 "application_uptime_seconds": 32461,
 "event_timestamp": "2017-05-07T06:32:09.816725",
 "scan_program": "health_check"}

The frequency with which these events are generated is determined by the
HEALTH_CHECK_INTERVAL environment variable.

How is this information useful?

If you notice a trend where a metric under “queue_sizes” is always-increasing,
you may have a failed processing thread. Correlate this with the events coming
from heartbeat.log. Look for the absence of a heartbeat event for the
corresponding thread). If you’ve confirmed that a thread has failed, the
fastest fix is to just restart the sensor. If you can get a traceback for the
thread failure, please submit it as an issue at
https://github.com/sitch-io/sensor/issues/new.

heartbeat.log

{"heartbeat_service_name": "MainThread", "event_timestamp": "2017-05-07T06:32:09.815061", "scan_program": "heartbeat"}
{"heartbeat_service_name": "kalibrate_consumer", "event_timestamp": "2017-05-07T06:32:09.815243", "scan_program": "heartbeat"}
{"heartbeat_service_name": "arfcn_correlator", "event_timestamp": "2017-05-07T06:32:09.815323", "scan_program": "heartbeat"}
{"heartbeat_service_name": "decomposer", "event_timestamp": "2017-05-07T06:32:09.815391", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gsm_modem_consumer", "event_timestamp": "2017-05-07T06:32:09.815456", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geoip_consumer", "event_timestamp": "2017-05-07T06:32:09.815520", "scan_program": "heartbeat"}
{"heartbeat_service_name": "writer", "event_timestamp": "2017-05-07T06:32:09.815584", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geo_correlator", "event_timestamp": "2017-05-07T06:32:09.815648", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gps_consumer", "event_timestamp": "2017-05-07T06:32:09.815711", "scan_program": "heartbeat"}
{"heartbeat_service_name": "cgi_correlator", "event_timestamp": "2017-05-07T06:32:09.815780", "scan_program": "heartbeat"}

These events are most useful when chasing down thread failure. It doesn’t
happen often, but when it does, you can look at these events as a time-series
and see where one ceases to appear. This is most useful when correlated with
queue sizes as reflected in health_check.log.

kal_channel.log

{"site_name": "sitch-site-testing",
 "power": 854930.16,
 "final_freq": "874979084",
 "band": "GSM-850",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "scanner_public_ip": "1.1.1.1",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_program": "kalibrate",
 "arfcn_int": 157,
 "channel": "157"}

scanner.log

{"site_name": "sitch-site-testing",
 "scan_results": [
 {"channel_detect_threshold": "105949.217083",
 "power": "854930.16",
 "final_freq": "874979084",
 "mod_freq": 20916.0,
 "band": "GSM-850",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "base_freq": 875000000.0,
 "device": "0: Generic RTL2832U OEM",
 "modifier": "-",
 "channel": "157"}
],
 "platform": "Unspecified",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "scan_program": "kalibrate",
 "scanner_name": "sitch-site-testing"}

The list of items under scan_results is used by the Decomposer to produce
messages that end up in the kal_channel log file.

sitch_alert.log

{"details": "Primary BTS was 310:260:275:20082 now 310:260:275:42302. Site: sitch-site-testing",
 "type": "Primary BTS metadata change.",
 "id": 110,
 "device_id": "sitch-site-testing"
 "event_timestamp": "2017-05-07T06:28:38.545421"}

	details is a human-readable representation of the event, with details.

	type is a human-readable description of the alert type. For a list of
supported event types, look in the __init__ section of
http://sensor.readthedocs.io/en/test/_modules/sitchlib/alert_manager.html#AlertManager

	id is an ID that maps to a specific event type. This is meant to simplify
integration with SIEM and log management systems.

	device_id is the device ID (see device configuration environment vars)

	event_timestamp is generated when the alert is detected.

sitch_init.log

{"evt_data": "T-Mobile",
 "evt_type": "registration",
 "evt_cls": "gsm_consumer",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "\r\n | OK\r\n | ATV1Q0&V \r\r\n | DEFAULT PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n| +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | USER PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n |+CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL:0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | ACTIVE PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR:0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | OK\r\n",
"evt_type": "device_config",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "IMSI_GOES_HERE",
"evt_type": "sim_imsi",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

These messages are only generated when the application starts.

	registration records the cell service provider, according to the GSM modem.

	device_config dumps the profiles in use from the GSM modem.

	sim_imsi records the IMSI from your cell modem’s SIM card.

Event Lifecycle

The lifecycle of an event in SITCH begins in the Sensor, and ends with the
user’s (or alert management system’s) consumption. We’ll follow the most
frequent event, the GSM modem scan event.

Ingestion

The Sensor runs the gsm_modem_consumer() function as a thread in runner.py.
This thread produces events from the output of the GSM modem being in
engineering mode. gsm_modem_consumer() wraps the GsmModem class (found in
gsm_modem.py), takes the output from the __iter__() in GsmModem, and places it
into the scan_results_queue FIFO buffer.

Decomposition

The decomposer() function in runner.py is also run in a thread, and as scan
results are placed into the scan_results_queue FIFO, it pulls them out and
decomposes them into individual events, one for each cell. Copies of these
decomposed events (labeled gsm_modem_channel) are placed into the
cgi_correlator_queue, arfcn_correlator_queue, and
message_write_queue FIFO buffers.

Correlation

The cgi_correlator() and arfcn_correlator() functions are run in threads and
consume events from the cgi_correlator_queue and arfcn_correlator_queue
FIFO buffers, respectively. The cgi_correlator() correlates the information
contained in the event with the feed information based on the OpenCellID
database, taking the geolocation of the sensor into account.
If any alarms are produced, they are placed in the message_write_queue.
The arfcn_correlator() function compares the ARFCN in the event metadata with
information contained in the feed based on the FCC license database, taking
into account the geolocation of the sensor.

Transmission

The output() function is run in a thread and listens for events being placed
into the message_write_queue FIFO. It takes the events it finds there and
writes them to disk, appending them to files by event type.

At this point, you have the original scan event, each decomposed channel event,
and any alerts produced, logged on disk in specific files, based on event type.

These events are picked up from disk by filebeat, and transmitted to Logstash,
which runs in the service side of SITCH.

Reception

Logstash splits the information between two data stores. The events themselves
get sent to Elasticsearch, and you can query them with Kibana. Some of the
measurement metadata is sent to influxDB, and can be viewed with Chronograf.

Events with type sitch_alert are sent to Slack by Logstash.

Sensor Troubleshooting

GSM modem device detection

If you’re using a GSM modem that’s not recognized by the device detector,
please add the output from running the ATI command against your GSM modem in
the variable named positive_match in the is_a_gsm_modem()` method, in the
sensor/sitch/sitchlib/device_detector.py file. Then send a pull request so
that everyone can get the benefit of your discovery.

You can do this using the resin.io terminal on the device by doing the following steps.

	Set the environment variable GSM_MODEM_BAND to nope to disable the scanner.

	Identify which TTY port your device is running on. You can find this in the startup logs under the string DeviceDetector: Detected USB devices.

	Run python from the sensors virtual environment

/app/sitch/venv/bin/python

	Create a serial connection to the GSM modem.

> import serial
> port = '/dev/[THE_MODEMS_TTY_SYS_NAME]'
> serconn = serial.Serial(port, 4800, timeout=1)

	Run the following snippet to get the string you need.

> test_command = "ATI \r\n"
> serconn.flush()
> for i in xrange(10):
> line = None
> line = serconn.readline()
> if line is None:
> time.sleep(1)
> pass
> else:
> print("Use this GSM Modem String in your pull request: {0}".format(line))
> serconn.flush()
> serconn.close()

Found but undetected TTY

The DeviceDetector shows it found my GSM Modem or GPS Device by the Configurator does not detect it

How to identify if this is your issue

You will be able to recognize this issue if three conditions are met.

	You are receiving an error that the device is not configured or cannot bind to its socket.

	Your Configurator returns an empty array instead of a USB-TTY device name when it attempts to detect a device.

	Your device detector is detecting these devices

If the device detector cannot find the devices, as the following log message shows, then this is not your issue.

How to fix this issue

To fix this issue you can set the hard-coded environment variable for the device that is not detected.

In the following example the GSM modem is not detected.

> 22.04.17 08:53:27 (-0400) Configurator: Detected GSM modems:
> 22.04.17 08:53:27 (-0400) []
> 22.04.17 08:53:27 (-0400) Configurator: Detected GPS devices:
> 22.04.17 08:53:27 (-0400) [u'/dev/ttyUSB0']

This shows me that the GSM modem was not detected and that my GPS device can be found at ‘/dev/ttyUSB0’.

By looking at my DeviceDetector I can see that I have two USB devices connected. It also gives me the ‘sys_name’ of each device.

Since I know that my GPS device has a sys_name of ttyUSB0 I know that the sys_name GSM device is ttyUSB1.

I can now set the GSM_MODEM_PORT environment variable to point to /dev/ttyUSB1 in the resin.io Environment Variables interface.

(NOTE: for those unfamiliar with python strings it should be noted that the u in front of each quoted value in these example logs is specifying that the string is a Unicode string. You do not want to enter the u in front of /dev/ttyUSB1 when setting your environment variables.)

If you have successfully set the environment variable you will no longer receive an error message.

In the case of the GSM modem you will also see that the following message has replaced the original error.

GPS device not detected (U-Blox7)

The U-Blox7 USB GPS device registers as a ttyACM device. If everything else
(with respect to the sensor hardware stack) is built to spec, the U-Blox7 GPS
will land at /dev/ttyACM0. Set the GSM_MODEM_PORT Sensor environment
variable in resin.io to /dev/ttyACM0. The application on the sensor will
then restart. Open the terminal in resin.io and
tail -f /data/sitch/log/gps.log to confirm that the GPS is correctly
configured and able to get a location fix. You may have to wait for a few
minutes. If this does not work, you can also use the terminal to run
gpsmon to see if gpsd is able to communicate with the device.

No events in Kibana

The SITCH sensor relies on Filebeat to read events from log files and transmit
them to the Logstash instance running in the SITCH service. There are a few
indicators when the transmission process is broken:

	Confirm that log files are being written:

	Confirm that log files are being written at /data/sitch/log/. If your sensor isn’t populating log files, the most likely reason is that the sensor is in a reboot loop due to mis-configuration.

	Check the Device Summary page in Resin, for the affected sensor. If the reason that the sensor isn’t coming online cleanly isn’t celarly explained in the log messages, please reach out in the gitter channel (https://gitter.im/sitch-io/sensor) or open an issue in the sensor project on Github: https://github.com/sitch-io/sensor/issues

	Make sure that the filebeat process is running on the sensor:

	Check using ps ef from the terminal: you should see a line containing: /usr/local/bin/filebeat-linux-arm -c /etc/filebeat.yml. If you don’t, you can try to start the process manually and look for errors printed to stdout.

	Your crypto certs and keys are retieved in the sensor initialization process and dropped at /host/run/dbus/crypto/. You should see three files there: ca.crt, logstash.crt, and logstash.key. If you don’t have those files on your system, there’s a really good chance that your sensor environment variables aren’t set correctly.

	You should confirm that the VAULT_PATH, VAULT_TOKEN, and VAULT_URL environment variables are correct, and that the network path is open between your sensor and Vault.

	You can confirm the network path is open by running this command: openssl s_client -connect VAULT_HOSTNAME:8200. Replace VAULT_HOSTNAME with the DNS name from the output of echo $VAULT_URL, when run in the terminal on the sensor. So if your $VAULT_URL is https://myvault.mydomain.com:8200, the command you should run in the terminal on the sensor is: openssl s_client -connect myvault.mydomain.com:8200.

	An error message containing gethostbyname failure indicates a failure in DNS resolution.

	A message containing connect: Connection refused indicates that the OpenSSL client is unable to connect to the port that Vault is running on, and you need to check your iptables and security groups settings, and confirm that Vault is actually listening on that port.

	You should also confirm that Vault is actually running.

	If the Vault container is stopped and restarted, you will need to unseal the Vault again. See the docs for the demo environment (https://github.com/sitch-io/demo) for details on how to unseal the vault.

	Confirm that Filebeat is processing the log files:

	There’s a registry file managed by Filebeat, located at /data/sitch/log/fb_registry. This file is what Filebeat uses to maintain its place in your log files, in the event it gets restarted. If this file is empty, confirm that the network path to Logstash is open by running this command: openssl s_client -connect ${LOG_HOST} If the connection times out, you should take a hard look at your network ACLs and iptables rules.

	If Filebeat appears to be transmitting events to Logstash and you still don’t see events in Kibana, you can run the logstash container in debug mode by changing the docker-compose.yml file’s setting for services.logstash.image from docker.io/sitch/logstash to docker.io/sitch/logstash:debug. Then, use docker-compose to take your stack down and back up again. This will be very verbose, and can cause a substantial amount of disk space consumption. Don’t leave it like that forever.

	If there is no indication that Logstash is having trouble getting events into Elasticsearch, check that you have an index for logstash built in Kibana.

	Navigate to this URL: https://MY_SITCH_SERVICE_HOSTNAME:8443/app/kibana#/management/kibana/indices , replacing MY_SITCH_SERVICE_HOSTNAME with the hostname of your SITCH service-side environment. If you have an index, you should have events.

	Try adjusting your time window, and confirm that the system clocks in your SITCH service side components are correct.

	Time drift can not only cause the query in Kibana to look weird, but it can cause an SSL connection negotiation failure between the sensor and service.

If none of the above lead you to success, please don’t hesitate to file an issue in the sensor’s Github repository: https://github.com/sitch-io/sensor/issues and/or reach out in the Gitter channel: https://gitter.im/sitch-io/sensor.

Reference Images

Connecting the USB TTY cable to the SIM 900 GSM modem

[image: SIM900 to USB TTY]

SITCH Sensor Internal API

Modules

	AlertManager

	ArfcnCorrelator

	CgiCorrelator

	ConfigHelper

	Decomposer

	DeviceDetector

	FeedManager

	GeoCorrelator

	GeoIp

	GeoipDecomposer

	GpsDecomposer

	GpsListener

	GsmDecomposer

	GsmModem

	KalDecomposer

	LocationTool

	Logger

	Utility

AlertManager

	
class sitchlib.AlertManager(device_id)

	AlertManager is used to ensure alerts are consistently formatted.

	
build_alert(alert_id, alert_message, location=None)

	Build the actual alert and returns it, formatted.

DEPRECATION NOTICE: The ‘alert_id’ field has been introduced for
better readability. It’s currently set to be the same as ‘id’.
At some point in the future, the ‘id’ field will be removed.

	Parameters

	
	alert_id (int) – The ID of the alert you want to build

	alert_message (str) – The message to be embedded in the alert.

	Returns

	
	Position 0 contains the string ‘sitch_alert’. Position 1

	contains the alert and metadata.

	Return type

	tuple

	
get_alert_type(alert_id)

	Return the alert description for alert_id.

ArfcnCorrelator

	
class sitchlib.ArfcnCorrelator(feed_dir, whitelist, power_threshold, device_id)

	The ArfcnCorrelator compares ARFCN metadata against feeds and threshold.

The feed data is put in place by the FeedManager class, prior to
instantiating the ArfcnCorrelator.

	
classmethod arfcn_from_scan(scan_type, scan_doc)

	Pull the ARFCN from different scan types.

	Parameters

	
	scan_type (str) – “kal_channel”, “gsm_modem_channel”, or “gps”.

	scan_doc (dict) – Scan document

	Returns

	
	ARFCN from scan, or None if scan is unrecognized or

	unsupported.

	Return type

	str

	
arfcn_over_threshold(arfcn_power)

	Compare the ARFCN power against the thresholdset on instantiation.

	Parameters

	arfcn_power (float) – If this isn’t a float already, it will be
coerced to float.

	Returns

	True if arfcn_power is over threshold, False if not.

	Return type

	bool

	
compare_arfcn_to_feed(arfcn, site_name, sensor_name)

	Wrap other functions that dig into the FCC license DB.

This relies on the observed_arfcn instance variable for caching, to
skip DB comparison, that way we (probably) won’t end up with a
forever-increasing queue size.

	Parameters

	arfcn (str) – This is the text representation of the ARFCN we want
to compare against the FCC license database.

	Returns

	
	You get back a list of alerts as tuples, where position 0 is

	’sitch_alert’ and position 1 is the actual alert.

	Return type

	list

	
correlate(scan_bolus)

	Entrypoint for correlation, wraps individual checks.

	Parameters

	scan_bolus (tuple) – Position 0 contains a string defining scan
type. If it’s type ‘gps’, the geo_state instance variable
will be updated with Position 1’s contents. If the scan type
is ‘kal_channel’, we perform feed and threshold comparison.
any other scan type will be compared against the feed only.

	Returns

	
	Returns a list of alerts. If no alerts are generated, an

	empty list is returned.

	Return type

	list

	
feed_alert_generator(arfcn, site_name, sensor_name)

	Wrap the yield_arfcn_from_feed function, and generates alerts.

	Parameters

	arfcn (str) – This is the string representation of the ARFCN to be
correlated.

	Returns

	This returns a list of alert tuples.

	Return type

	list

	
classmethod is_in_range(item_gps, state_gps)

	Return True if items are within 40km.

	
manage_arfcn_lists(direction, arfcn, aspect)

	Manage the instance variable lists of ARFCNs.

This is necessary to maintain an accurate state over time, and reduce
unnecessary noise.

	Parameters

	
	direction (str) – Only will take action if this is “in” or “out”

	arfcn (str) – This is the ARFCN that will be moved in or our of
the list

	aspect (str) – This is used to match the ARFCN with the list it
should be moved in or out of. This should be either
“threshold” or “not_in_range”.

	
match_arfcn_against_feed(arfcn, state_gps)

	Get a match for the ARFCN within range of the sensor.

	Parameters

	arfcn (str) – Absolute Radio Frequency Channel Number

	Returns

	True if there is an ARFCN in range, False if not.

	Return type

	bool

CgiCorrelator

	
class sitchlib.CgiCorrelator(feed_dir, cgi_whitelist, mcc_list, device_id)

	The CgiCorrelator compares CGI addressing against the OpenCellID DB.

The feed data is put in place by the FeedManager class, prior to
instantiating the CgiCorrelator.

	
classmethod bts_from_channel(channel)

	Create a simplified representation of BTS metadata.

	Parameters

	channel (dict) –

	Returns

	Contains MCC, MNC, LAC, and cellid

	Return type

	dict

	
classmethod build_chan_here(channel, state)

	Build geo information for channel, to aid in geo correlation.

	Parameters

	
	channel (dict) – Channel metadata

	state (dict) – Geo-json representing the current location of the
sensor

	Returns

	
	Original channel structure, with the current sensor location

	embedded.

	Return type

	dict

	
classmethod cell_matches(cell, mcc, mnc, lac, cellid)

	Compare cell metadata against mcc, mnc, lac, cellid.

	
classmethod cgi_whitelist_message(cgi_wl)

	Format and return the CGI whitelist initialization message.

	Parameters

	cgi_wl (list) – CGI whitelist

	Returns

	Formatted message

	Return type

	str

	
classmethod channel_in_feed_db(channel)

	Return True if channel geo metadata is complete.

	
classmethod channel_out_of_range(channel)

	Check to see if sensor is out of range for CGI.

	Parameters

	channel (dict) – Channel metadata

	Returns

	True if the sensor is in range of the detected CGI

	Return type

	bool

	
check_channel_against_feed(channel)

	Determine whether or not to fire an alert for CGI presence in feed.

	Parameters

	channel (dict) – Channel metadata

	Returns

	
	Empty if there is no alert, a two-item tuple if an alert

	is generated.

	Return type

	tuple

	
check_channel_range(channel)

	Check to see if the detected CGI is in range.

	Parameters

	channel (dict) – Channel metadata, enriched with feed info.

	Returns

	
	Empry if no alert is generated. A two-item tuple if an

	alert condition is detected.

	Return type

	tuple

	
check_scan_document(scan_document)

	Check to see if there are no in-LAI neighbors for channel 0

	
classmethod convert_float_targets(channel)

	Convert string values for rxq and rxl to floating point.

	
classmethod convert_hex_targets(channel)

	Convert lac and cellid from hex to decimal.

	
correlate(scan_bolus)

	Entrypoint for the CGI correlation component.

	Parameters

	scan_bolus (tuple) – scan_bolus[0] contains the scan type. If
the type is ‘gps’, it will set the correlator’s geo location.
For other scan types, we expect them to look like
gsm_modem_channel events, and they are compared against the
feed database as well as state history, tracking things
like the current active cell’s CGI.

	Returns

	
	Returns a list of tuples, representing alerts. If no alerts

	fire, the list will be empty.

	Return type

	list

	
feed_comparison(channel)

	Compare channel metadata against the feed DB.

	This function wraps a few checks against the feed DB. It first checks

	if the bts is in the feed DB. Next, it checks that the sensor is
within range of the BTS in the feed DB. Finally, if it’s the
primary channel, it checks to see if the primary BTS has changed.

	Parameters

	channel (dict) – Channel, enriched with geo information

	Returns

	
	If alarms are generated, they’ll be returned in a list of

	tuples. Otherwise, an empty list comes back.

	Return type

	list

	
classmethod get_cell_by_id(scan_document, cell_no)

	Get cell from doc by ID

	
classmethod get_cgi_int(channel)

	Attempt to create an integer representation of CGI.

	
get_feed_info(mcc, mnc, lac, cellid)

	Check CGI against cache, then against the feed DB.

	Parameters

	
	mcc (str) – Mobile Country Code

	mnc (str) – Mobile Network Code

	lac (str) – Location Area Code

	cellid (str) – Cell ID

	Returns

	Dictionary containing feed information for CGI

	Return type

	dict

	
get_feed_info_from_db(mcc, mnc, lac, cellid)

	Interrogate DB for CGI information.

	Parameters

	
	(str) – Mobile Country Code

	mnc (str) – Mobile Network Code

	lac (str) – Location Area Code

	cellid (str) – Cell ID

	Returns

	
	Dictionary containing feed information for CGI. If no

	information exists, the feed geo information will be zeroed
out…

	Return type

	dict

	
classmethod make_bts_friendly(bts_struct)

	Create a human-friendly representation of CGI.

	Parameters

	bts_struct (dict) – Simple structure containing CGI components.

	Returns

	
	String reperesentation of CGI, with items being

	colon-separated.

	Return type

	str

	
classmethod normalize_feed_info_for_cache(feed_item)

	Normalize field keys for the feed cache.

	
classmethod primary_bts_changed(prior_bts, channel, cgi_whitelist)

	Create alarms if primary BTS metadats changed.

	Parameters

	
	prior_bts (str) – Current primary BTS

	channel (dict) – Channel metadata

	cgi_whitelist – Whitelist of CGIs to NOT alert on

	Returns

	
	True if the primary BTS has changed and the new BTS in not

	on the whitelist. False otherwise.

	Return type

	bool

	
process_cell_zero(channel)

	Process channel zero.

	Parameters

	channel (dict) – Channel metadata.

	Returns

	
	Empry if there is no alert, a two-item tuple if an alert

	condition is detected.

	Return type

	tuple

	
classmethod should_skip_feed(channel)

	Examine channel info to determine if feed comparison should happen.

	Parameters

	channel (dict) – Channel information.

	Returns

	True if channel information is complete, False if not.

	Return type

	bool

ConfigHelper

	
class sitchlib.ConfigHelper(sitch_var_base_dir='/data/sitch/')

	Manage configuration information for entire SITCH Sensor.

	
build_logrotate_config()

	Generate logrotate config file contents.

	
classmethod get_db_schema_translations(filename='/etc/schemas/feed_db_translation.yaml')

	Get the feed DB schema translations from file.

	
classmethod get_db_schemas(filename='/etc/schemas/feed_db_schema.yaml')

	Get the feed DB schemas from file.

	
classmethod get_filebeat_template(filename='/etc/templates/filebeat.json')

	Get the filebeat config from template file.

	
classmethod get_from_env(k)

	Get configuration items from env vars. Hard exit if not set.

	
get_gps_device_port()

	Get GPS device from detector, override with env var.

	
get_gsm_modem_port()

	Get GSM modem port from detector, override with env var.

	
classmethod get_list_from_env(k, optional=False)

	Get a list from environment variables.

If optional=True, the absence of this var will cause a hard exit.

	
get_secret_from_vault()

	Retrieve secrets from Vault.

	
print_devices_as_detected()

	Print detected GPS and GSM devices.

	
classmethod set_filebeat_logfile_paths(log_prefix, filebeat_config)

	Sets all log file paths to align with configured log prefix.

	
write_filebeat_config()

	Write out filebeat config to file.

Decomposer

	
class sitchlib.Decomposer

	Decompose device messages into normalized log messages.

	
classmethod decompose(scan)

	Direct messages to the correct decomposer.

DeviceDetector

	
class sitchlib.DeviceDetector

	Interrogate all USB TTY ports.

	
gsm_radios

	list – This is a list of GSM radios, represented in dict
type objects.

	
gps_devices

	list – This is a list of GPS devices. Just strings like
‘/dev/ttyUSB0’.

	
classmethod find_gps_radios(usbtty_ports)

	Interrogate USB TTY ports, return a list of GPS devices.

	
classmethod find_gsm_radios(usbtty_ports)

	Interrogate USB TTY ports, return GSM radios.

	
classmethod get_devices_by_subsys(subsys_type)

	Get devices from udev, by type.

	
classmethod get_gsm_modem_info(port)

	Get modem information.

	Parameters

	port (str) – Device/port to interrogate.

	Returns

	
	metadata describing modem manufacturer, model, revision,

	and serial.

	Return type

	dict

	
classmethod interrogate_gsm_modem(port, command)

	Issue command on port, return output.

	Parameters

	
	port (str) – Port/device to interrogate.

	commmand (str) – Command to be issued.

	Returns

	
	Response from device, if any. If none, returns an empty

	string.

	Return type

	str

	
classmethod interrogator(match_list, port, test_command=None)

	Interrogate serial port, and attempt to match output.

	Parameters

	
	match_list (list) – List of strings that positively identify a
device of a specific type.

	port (str) – Port to be interrogated.

	test_command (str) – Command to trigger output to match against
match_list.

	Returns

	True if the device is a positive match, False if not.

	Return type

	bool

	
classmethod interrogator_matcher(matchers, line)

	Attempt to match output against known identifing strings.

	Parameters

	
	matchers (list) – List of strings which represent positive matches.

	line (str) – Output from USB TTY device.

	Returns

	True if it’s a match, False if not.

	Return type

	bool

	
classmethod is_a_gps(port)

	Wrap interrogator for determining when a GPS is discovered.

	
classmethod is_a_gsm_modem(port)

	Wrap interrogator for determining when a GSM modem is discovered.

FeedManager

	
class sitchlib.FeedManager(config)

	Manage downloading the feed DB, and merging it into the sqlite DB.

	
apply_mode(mode)

	Adjust FeedManager behavior according to operating mode.

	
classmethod create_and_populate_db(db_schema, db_translate_schema, feed_files, db_file, target_radios)

	Create DB, then merge all records from file.

	Parameters

	
	db_schema (list) – One K:V set from the top level of
feed_db_schema.yaml

	feed_files (list) – List of feed files to be merged.

	db_file (str) – Full path of CGI DB file.

	Returns

	Most recent timestamp from merge.

	Return type

	str

	
classmethod create_db(db_file, db_schema)

	Create a DB.

This creates either the CGI or ARFCN database.

	Parameters

	
	db_file (str) – Path to DB file.

	db_schema (dict) – One top-level k:v from feed_db_schema.yaml

	
classmethod create_db_init_string(db_schema)

	Create DB initialization string based on db_schema input.

	Expects a dictionary like this:

	
	{“table_name”:

	
	{“fields”: [“field_1”,

	
“field_2”
“field_3”],

	“unique”: [“field_1”,

	“field_2”]}}

	Parameters

	db_schema (dict) – Dictionary describing the DB schema

	
classmethod dump_csv_to_db(db_schema, db_translate_schema, feed_file, db_file, target_radios, last_upd=0)

	Merge CSV into DB, taking into account the record update time.

	Parameters

	
	db_schema (dict) – Dictionary produced from feed_db_schema.yaml.
Only one key, cgi or arfcn.

	feed_file (str) – Path to feed CSV file.

	db_file (str) – Path to sqlite DB file.

	last_upd (int, optional) – Epoch time. Records updated
before this date will not be inserted into the DB.

	
get_newest_record_time(db_type)

	Get the newest record time from file in feed dir.

	
classmethod get_source_url(url_base, mcc)

	Create source URL for MCC file.

	Parameters

	
	url_base (str) – Base URL for MCC file.

	mcc (str) – MCC for feed file.

	
classmethod mass_insert(table, fields, rows, db_file)

	Mass-insert records into the DB.

	Parameters

	
	schema (list) – List of DB fields.

	rows (list) – List of tuples, each tuple contains values
corresponding to the keys in schema.

	db_file (str) – Path to sqlite file.

	
classmethod merge_feed_files_into_db(db_schema, db_translate_schema, feed_files, db_file, target_radios, last_upd)

	Wrapper for merging feed file data into CGI DB.

	Parameters

	
	schema (list) – List of fields in DB

	feed_file (str) – Path to feed file to be merged into CGI DB.

	db_file (str) – Path to CGI DB file.

	last_upd (str) – Epoch time stamp, will not attempt to merge any
records with timestamps before this time.

	Returns

	Most recent timestamp from merged feed file.

	Return type

	str

	
classmethod place_feed_file(feed_dir, url_base, item_id)

	Retrieve and places feed files for use by the Enricher modules.

	Parameters

	
	feed_dir (str) – Destination directory for feed files

	url_base (str) – Base URL for hosted feed files

	item_id (str) – For FCC, this is the two-letter (“CA” or “TN”,
for example), which is used in the retrieval of the feed file

as well as the construction of the local feed file name. For
MCC this is the MCC, but in string form. Not integer.

	
classmethod reconcile_db(db_schema, db_translate_schema, feed_files, db_file, target_radios, last_update)

	Reconcile feed files against the target DB.

	Parameters

	
	feed_files (list) – List of paths to feed files.

	db_file (str) – Full path to CGI DB file.

	last_update (str) – Epoch time of most recent record in DB

	Returns

	Epoch timestamp of most recently updated DB record.

	Return type

	str

	
set_newest_record_time(db_type, timestamp)

	Set the newest record time.

	Parameters

	timestamp (str) – Epoch time to be written to file If not string,
will be coerced to string.

	
classmethod should_update_record_epoch(anchor_time, update_time)

	Compare timestamps to determine if a record should be updated.

	
classmethod should_update_record_iso(anchor_time, update_time)

	Compare timestamps to determine if a record should be updated.

	
classmethod tup_from_row(schema, row)

	Convert a row into a tuple, for insertion into DB.

	Parameters

	
	schema (list) – Field list for DB.

	row (dict) – Row of data. Keys align with items in schema.

	Returns

	
	Tuple representing values to be inserted into DB, ordered

	by fields in schema.

	Return type

	tuple

	
update_feed_db()

	Wrapper for feed file reconciliation against DBs.

	
update_feed_files()

	Wrapper for feed file retrieval routines.

GeoCorrelator

	
class sitchlib.GeoCorrelator(device_id)

	Geographic correlator.

	
correlate(scan_bolus)

	Correlate one geo event.

	The first time we get a geo event, we set the state and print a message

	to stdout to that effect. Every subsequent message is compared
against the geo_anchor. Once the anchor is set, it does not
change for the life of the instance. Correlation of subsequent
events causes the distance beween the anchor and current event
to be determined and if the threshold of 10km is exceeded, an alert
is returned.

	Parameters

	scan_bolus (tuple) – Two-item tuple. Position 0 contains the scan
type, which is not checked. We should only ever have geo
events coming through this method. Position 1 is expected to
contain geo json.

	Returns

	
	List of alerts. If no alerts are fired, the list returned is

	zero-length.

	Return type

	list

	
classmethod geo_drift_check(geo_anchor, gps_scan, threshold, device_id)

	Fire alarm if distance between points exceeds threshold.

	Parameters

	
	geo_anchor (dict) – Geographic anchor point, usually stored in an
instance variable and passed in via the correlate() method.

	gps_scan (dict) – Same format as geo_anchor, expects the same format
as geo_anchor.

	threshold (int) – Alerting threshold in km.

	Returns

	
	list of alerts (usually just one) or an empty list of there

	are no alerts.

	Return type

	list

	
classmethod time_drift_check(gps_scan, threshold_mins, device_id)

	Checks drift value, alarms if beyond threshold.

GeoIp

	
class sitchlib.GeoIp(delay=60)

	Generate GeoIP events.

	
set_geo()

	Use public IP to determine GeoIP.

	
set_ip()

	Set public IP address.

GeoipDecomposer

	
class sitchlib.geoip_decomposer.GeoipDecomposer

	GeoIP Decomposer.

	
classmethod decompose(scan_document)

	Validate and decompose GeoIP Events.

	Parameters

	scan_document (dict) – GeoIP scan document.

	Returns

	
	one item in list: a two-item tuple. Position 0 is geo_ip.

	Position 1 is the actual scan document. If the scan fails
validation, you’ll only get an empty list back

	Return type

	list

	
classmethod scan_document_is_valid(scan_document)

	Validate the scan document.

GpsDecomposer

	
class sitchlib.gps_decomposer.GpsDecomposer

	GPS Decomposer.

	
classmethod decompose(scan_document)

	Decompose a GPS event.

	Parameters

	scan_document (dict) – Geo json from GPS device.

	Returns

	
	One two-item tuple in list. Position 0 is gps, position 1

	is the validated geo scan. If the scan doesn’t validate, an
empty list is returned.

	Return type

	list

	
classmethod scan_document_is_valid(scan_document)

	Validate the scan document.

GpsListener

	
class sitchlib.GpsListener(delay=60)

	Wrap the GPS device with an iterator.

	
classmethod get_time_delta(iso_1, iso_2)

	Get the drift, in minutes, between two ISO times.

GsmDecomposer

	
class sitchlib.gsm_decomposer.GsmDecomposer

	Decomposes GSM scans.

	
classmethod bts_from_channel(channel)

	Return clean BTS from channel.

	
classmethod convert_float_targets(channel)

	Convert rxq and rxl to float.

	
classmethod convert_hex_targets(channel)

	Convert LAC anc CellID from hex to decimal.

	
classmethod decompose(scan_document)

	Turn one scan document into a list of channel scan documents.

	Parameters

	scan_document (dict) – GSM modem scan.

	Returns

	
	List of tuples. First position in tuple identifies scan

	type. Second position is the actual scan data.

	Return type

	list

	
classmethod enrich_channel_with_scan(channel, scan_document)

	Enrich channel with scan document metadata.

	
classmethod get_cgi_int(channel)

	Attempt to create an integer representation of CGI.

	
classmethod make_bts_friendly(bts_struct)

	Expect a dict with keys for mcc, mnc, lac, cellid.

GsmModem

	
class sitchlib.GsmModem(ser_port)

	GSM Modem handler class. Interfaces with device over serial.

	Calling GsmModem.set_eng_mode() causes the module to go into

	engineering mode, which will cause it to return cell network
information. It has an iterator (generator) built in that cranks
out dicts.

	
classmethod clean_operator_string(operator_string)

	Clean up the operator string.

	
dump_config()

	Dump modem’s configuration.

	
eng_mode(status)

	Set or unset engineering mode on the modem.

	Parameters

	status (bool) – True to enable engineering mode, False to disable.

	
get_imsi()

	Get the IMSI of the SIM installed in the modem.

	
get_reg_info()

	Get registration information from the modem.

	
classmethod process_12(parts)

	Process a 12-part CENG message.

	Parameters

	parts (list) – Parts parsed from original CENG message.

	Returns

	Structured cell channel metadata.

	Return type

	dict

	
classmethod process_7(parts)

	Process a 7-part CENG message.

	In a 7-item line, cellid is not provided. We set

	it to 0 to prevent barfing elsewhere.

	Parameters

	parts (list) – Parts parsed from original CENG message.

	Returns

	Structured cell channel metadata.

	Return type

	dict

	
classmethod process_8(parts)

	Process an 8-part CENG message.

	Parameters

	parts (list) – Parts parsed from original CENG message.

	Returns

	Structured cell channel metadata.

	Return type

	dict

	
classmethod process_line(line)

	Process line output from GSM modem.

	We expect to see only lines starting with +CENG:. Otherwise, it’s

	an empty dictionary getting returned.

	Parameters

	line (str) – Raw line output from GSM modem.

	Returns

	Structured data parsed from line.

	Return type

	dict

	
set_band(band)

	Set the band the GSM modem should communicate on.

If the band does not set correctly, an error will print to stdout and
the original setting will persist.

	Parameters

	band (str) – Pick one: EGSM_MODE, PGSM_MODE, DCS_MODE,
GSM850_MODE, PCS_MODE, EGSM_DCS_MODE, GSM850_PCS_MODE,
EGSM_PCS_MODE, or ALL_BAND.

KalDecomposer

	
class sitchlib.kal_decomposer.KalDecomposer

	Decompose Kalibrate scans.

	
classmethod decompose(scan_document)

	Decompose Kalibrate scans into channels.

	The first item in each returned tuple indicates the scan doc type.

	This module produces: “scan” (Kalibrate scan doc) and “kal_channel”
(Individual channel from Kalibrate scan)

	Parameters

	scan_document (dict) – Output from Kalibrate as interpreted by
kalibrate Python module.

LocationTool

	
class sitchlib.LocationTool

	Class with location-oriented functions.

	
classmethod get_distance_between_points(point_1, point_2)

	Calculate distance between points.

	Parameters

	
	point_1 (tuple) – (lon, lat) for first point.

	point_2 (tuple) – (lon, lat) for second point.

	Returns

	Kilometers between point_1 and point_2.

	Return type

	int

	
classmethod get_geo_for_ip(ip_address)

	Get geo coordinates for IP address.

	Parameters

	ip_address (str) – IP address.

	
classmethod validate_geo(latlon)

	Validate that lon/lat are valid numbers for Planet Earth

Logger

	
class sitchlib.LogHandler(config)

	Instantiate this class with the log file prefix.

	
classmethod get_log_file_name(ltype)

	Get the name of the appropriate log file for the message type.

	Parameters

	ltype (str) – Log type

	Returns

	Log file name

	Return type

	str

	
record_log_message(bolus)

	Determine log file for message and send to the writer.

	
write_log_message(log_file_type, message)

	Write message to disk.

	Parameters

	
	log_file_type (str) – Type of log message

	message (str) – Message to be logged to disk

Utility

	
class sitchlib.Utility

	General utility class.

	
classmethod calculate_distance(lon_1, lat_1, lon_2, lat_2)

	Wrap the LocationTool.get_distance_between_points() fn.

	
classmethod construct_feed_file_name(feed_dir, prefix)

	Construct full path for feed file.

	
classmethod create_file_if_nonexistent(path, lfile)

	Create file and path, if it doesn’t already exist.

	
classmethod create_path_if_nonexistent(path)

	Create filesystem directory path.

	
classmethod dt_delta_in_minutes(dt_1, dt_2)

	Calculate the delta between two datetime objects, in minutes.

	
classmethod dt_from_iso(iso_time)

	Exchange an ISO8601-formatted string for a datetime object.

	
classmethod epoch_to_iso8601(unix_time)

	Transform epoch time to ISO8601 format.

	
classmethod get_now_string()

	Get ISO8601 timestamp for now.

	
classmethod get_performance_metrics(application_uptime_s, queue_sizes={})

	Get sensor hardware and os performance statistics.

	
classmethod get_platform_info()

	Get information on platform and hardware.

	
classmethod get_platform_name()

	Get platform name from lshw output.

	
classmethod get_public_ip()

	Get public IP.

	
classmethod heartbeat(service_name)

	Generate heartbeat message.

	
classmethod hex_to_dec(hx)

	Change hex to decimal.

	
classmethod is_valid_json(in_str)

	Test string for json validity.

	
classmethod pretty_string(structure)

	Pretty-print lines.

	
classmethod start_component(runcmd)

	Start a thing.

	
classmethod str_to_float(s)

	Change string to float.

	
classmethod strip_list(raw_struct)

	Strip contents from single-item list.

	
classmethod validate_geojson(geojson)

	Ensure that geojson contains the right fields

	
classmethod write_file(location, contents)

	Write string to file.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	AlertManager (class in sitchlib)

 	apply_mode() (sitchlib.FeedManager method)

 	
 	arfcn_from_scan() (sitchlib.ArfcnCorrelator class method)

 	arfcn_over_threshold() (sitchlib.ArfcnCorrelator method)

 	ArfcnCorrelator (class in sitchlib)

B

 	
 	bts_from_channel() (sitchlib.CgiCorrelator class method)

 	(sitchlib.gsm_decomposer.GsmDecomposer class method)

 	
 	build_alert() (sitchlib.AlertManager method)

 	build_chan_here() (sitchlib.CgiCorrelator class method)

 	build_logrotate_config() (sitchlib.ConfigHelper method)

C

 	
 	calculate_distance() (sitchlib.Utility class method)

 	cell_matches() (sitchlib.CgiCorrelator class method)

 	cgi_whitelist_message() (sitchlib.CgiCorrelator class method)

 	CgiCorrelator (class in sitchlib)

 	channel_in_feed_db() (sitchlib.CgiCorrelator class method)

 	channel_out_of_range() (sitchlib.CgiCorrelator class method)

 	check_channel_against_feed() (sitchlib.CgiCorrelator method)

 	check_channel_range() (sitchlib.CgiCorrelator method)

 	check_scan_document() (sitchlib.CgiCorrelator method)

 	clean_operator_string() (sitchlib.GsmModem class method)

 	compare_arfcn_to_feed() (sitchlib.ArfcnCorrelator method)

 	ConfigHelper (class in sitchlib)

 	
 	construct_feed_file_name() (sitchlib.Utility class method)

 	convert_float_targets() (sitchlib.CgiCorrelator class method)

 	(sitchlib.gsm_decomposer.GsmDecomposer class method)

 	convert_hex_targets() (sitchlib.CgiCorrelator class method)

 	(sitchlib.gsm_decomposer.GsmDecomposer class method)

 	correlate() (sitchlib.ArfcnCorrelator method)

 	(sitchlib.CgiCorrelator method)

 	(sitchlib.GeoCorrelator method)

 	create_and_populate_db() (sitchlib.FeedManager class method)

 	create_db() (sitchlib.FeedManager class method)

 	create_db_init_string() (sitchlib.FeedManager class method)

 	create_file_if_nonexistent() (sitchlib.Utility class method)

 	create_path_if_nonexistent() (sitchlib.Utility class method)

D

 	
 	decompose() (sitchlib.Decomposer class method)

 	(sitchlib.geoip_decomposer.GeoipDecomposer class method)

 	(sitchlib.gps_decomposer.GpsDecomposer class method)

 	(sitchlib.gsm_decomposer.GsmDecomposer class method)

 	(sitchlib.kal_decomposer.KalDecomposer class method)

 	
 	Decomposer (class in sitchlib)

 	DeviceDetector (class in sitchlib)

 	dt_delta_in_minutes() (sitchlib.Utility class method)

 	dt_from_iso() (sitchlib.Utility class method)

 	dump_config() (sitchlib.GsmModem method)

 	dump_csv_to_db() (sitchlib.FeedManager class method)

E

 	
 	eng_mode() (sitchlib.GsmModem method)

 	
 	enrich_channel_with_scan() (sitchlib.gsm_decomposer.GsmDecomposer class method)

 	epoch_to_iso8601() (sitchlib.Utility class method)

F

 	
 	feed_alert_generator() (sitchlib.ArfcnCorrelator method)

 	feed_comparison() (sitchlib.CgiCorrelator method)

 	
 	FeedManager (class in sitchlib)

 	find_gps_radios() (sitchlib.DeviceDetector class method)

 	find_gsm_radios() (sitchlib.DeviceDetector class method)

G

 	
 	geo_drift_check() (sitchlib.GeoCorrelator class method)

 	GeoCorrelator (class in sitchlib)

 	GeoIp (class in sitchlib)

 	GeoipDecomposer (class in sitchlib.geoip_decomposer)

 	get_alert_type() (sitchlib.AlertManager method)

 	get_cell_by_id() (sitchlib.CgiCorrelator class method)

 	get_cgi_int() (sitchlib.CgiCorrelator class method)

 	(sitchlib.gsm_decomposer.GsmDecomposer class method)

 	get_db_schema_translations() (sitchlib.ConfigHelper class method)

 	get_db_schemas() (sitchlib.ConfigHelper class method)

 	get_devices_by_subsys() (sitchlib.DeviceDetector class method)

 	get_distance_between_points() (sitchlib.LocationTool class method)

 	get_feed_info() (sitchlib.CgiCorrelator method)

 	get_feed_info_from_db() (sitchlib.CgiCorrelator method)

 	get_filebeat_template() (sitchlib.ConfigHelper class method)

 	get_from_env() (sitchlib.ConfigHelper class method)

 	get_geo_for_ip() (sitchlib.LocationTool class method)

 	get_gps_device_port() (sitchlib.ConfigHelper method)

 	get_gsm_modem_info() (sitchlib.DeviceDetector class method)

 	
 	get_gsm_modem_port() (sitchlib.ConfigHelper method)

 	get_imsi() (sitchlib.GsmModem method)

 	get_list_from_env() (sitchlib.ConfigHelper class method)

 	get_log_file_name() (sitchlib.LogHandler class method)

 	get_newest_record_time() (sitchlib.FeedManager method)

 	get_now_string() (sitchlib.Utility class method)

 	get_performance_metrics() (sitchlib.Utility class method)

 	get_platform_info() (sitchlib.Utility class method)

 	get_platform_name() (sitchlib.Utility class method)

 	get_public_ip() (sitchlib.Utility class method)

 	get_reg_info() (sitchlib.GsmModem method)

 	get_secret_from_vault() (sitchlib.ConfigHelper method)

 	get_source_url() (sitchlib.FeedManager class method)

 	get_time_delta() (sitchlib.GpsListener class method)

 	gps_devices (sitchlib.DeviceDetector attribute)

 	GpsDecomposer (class in sitchlib.gps_decomposer)

 	GpsListener (class in sitchlib)

 	gsm_radios (sitchlib.DeviceDetector attribute)

 	GsmDecomposer (class in sitchlib.gsm_decomposer)

 	GsmModem (class in sitchlib)

H

 	
 	heartbeat() (sitchlib.Utility class method)

 	
 	hex_to_dec() (sitchlib.Utility class method)

I

 	
 	interrogate_gsm_modem() (sitchlib.DeviceDetector class method)

 	interrogator() (sitchlib.DeviceDetector class method)

 	interrogator_matcher() (sitchlib.DeviceDetector class method)

 	
 	is_a_gps() (sitchlib.DeviceDetector class method)

 	is_a_gsm_modem() (sitchlib.DeviceDetector class method)

 	is_in_range() (sitchlib.ArfcnCorrelator class method)

 	is_valid_json() (sitchlib.Utility class method)

K

 	
 	KalDecomposer (class in sitchlib.kal_decomposer)

L

 	
 	LocationTool (class in sitchlib)

 	
 	LogHandler (class in sitchlib)

M

 	
 	make_bts_friendly() (sitchlib.CgiCorrelator class method)

 	(sitchlib.gsm_decomposer.GsmDecomposer class method)

 	manage_arfcn_lists() (sitchlib.ArfcnCorrelator method)

 	
 	mass_insert() (sitchlib.FeedManager class method)

 	match_arfcn_against_feed() (sitchlib.ArfcnCorrelator method)

 	merge_feed_files_into_db() (sitchlib.FeedManager class method)

N

 	
 	normalize_feed_info_for_cache() (sitchlib.CgiCorrelator class method)

P

 	
 	place_feed_file() (sitchlib.FeedManager class method)

 	pretty_string() (sitchlib.Utility class method)

 	primary_bts_changed() (sitchlib.CgiCorrelator class method)

 	print_devices_as_detected() (sitchlib.ConfigHelper method)

 	
 	process_12() (sitchlib.GsmModem class method)

 	process_7() (sitchlib.GsmModem class method)

 	process_8() (sitchlib.GsmModem class method)

 	process_cell_zero() (sitchlib.CgiCorrelator method)

 	process_line() (sitchlib.GsmModem class method)

R

 	
 	reconcile_db() (sitchlib.FeedManager class method)

 	
 	record_log_message() (sitchlib.LogHandler method)

S

 	
 	scan_document_is_valid() (sitchlib.geoip_decomposer.GeoipDecomposer class method)

 	(sitchlib.gps_decomposer.GpsDecomposer class method)

 	set_band() (sitchlib.GsmModem method)

 	set_filebeat_logfile_paths() (sitchlib.ConfigHelper class method)

 	set_geo() (sitchlib.GeoIp method)

 	set_ip() (sitchlib.GeoIp method)

 	
 	set_newest_record_time() (sitchlib.FeedManager method)

 	should_skip_feed() (sitchlib.CgiCorrelator class method)

 	should_update_record_epoch() (sitchlib.FeedManager class method)

 	should_update_record_iso() (sitchlib.FeedManager class method)

 	start_component() (sitchlib.Utility class method)

 	str_to_float() (sitchlib.Utility class method)

 	strip_list() (sitchlib.Utility class method)

T

 	
 	time_drift_check() (sitchlib.GeoCorrelator class method)

 	
 	tup_from_row() (sitchlib.FeedManager class method)

U

 	
 	update_feed_db() (sitchlib.FeedManager method)

 	
 	update_feed_files() (sitchlib.FeedManager method)

 	Utility (class in sitchlib)

V

 	
 	validate_geo() (sitchlib.LocationTool class method)

 	
 	validate_geojson() (sitchlib.Utility class method)

W

 	
 	write_file() (sitchlib.Utility class method)

 	
 	write_filebeat_config() (sitchlib.ConfigHelper method)

 	write_log_message() (sitchlib.LogHandler method)

cells.log

{"scan_results": [
 {"cgi_str": "310:260:275:20000",
 "site_name": "sitch-site-testing",
 "bsic": "16",
 "mcc": "310",
 "rla": 0,
 "lac": "275",
 "band": "ALL_BAND",
 "feed_info": {
 "mcc": "310",
 "lon": "-122.464146",
 "lac": "275",
 "range": 325,
 "lat": "37.776641",
 "mnc": "260",
 "cellid": "20082"},
 "scan_location": "sitch-site-testing",
 "mnc": "260",
 "txp": 03,
 "distance": 534.3820159387475,
 "scan_finish": "2017-05-06T06:25:49.837957",
 "rxl": 20.0,
 "cell": 0,
 "scanner_public_ip": "1.1.1.1",
 "rxq": 0.0,
 "ta": 255,
 "cellid": "20082",
 "cgi_int": 31026027520082,
 "arfcn": 684}
 ...],
 "band": "ALL_BAND",
 "site_name": "sitch-site-testing",
 "platform": "Unspecified",
 "scan_start": "",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-06T06:25:49.837957",
 "scan_program": "gsm_modem"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

geoip.log

{"geometry":
 {"type": "Point",
 "coordinates": [-122, 37]
 },
 "scan_program": "geo_ip",
 "type": "Feature",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

This is in geojson structure, with the addition of an event_timestamp field.

gps.log

{"sat_time": "2017-05-02T06:26:08.000Z",
 "geometry": {
 "type": "Point",
 "coordinates":
 [-122, 37]
 },
 "time_drift": 0.006355733333333334,
 "sys_time": "2017-05-02T06:26:08.381344",
 "scan_program": "gpsd",
 "type": "Feature"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

gsm_modem_channel.log

{"cgi_str": "310:260:275:20082",
"site_name": "sitch-site-testing",
"bsic": "16",
"mcc": "310",
"rla": 8,
"lac": "275",
"band": "ALL_BAND",
"feed_info": {
 "mcc": "310",
 "lon": "-122.123",
 "lac": "275",
 "range": 325,
 "lat": "37.123",
 "mnc": "260",
 "cellid": "20082"
 },
"scan_location": "sitch-site-testing",
"mnc": "260",
"txp": 3,
"distance": 568.12345,
"scan_finish": "2017-05-16T02:21:23.901298",
"event_timestamp": "2017-05-16T02:21:23.901298",
"rxl": 24.0,
"cell": 0,
"scanner_public_ip": "1.1.1.1",
"rxq": 0.0,
"ta": 255,
"cellid": "20082",
"cgi_int": 31026027520082,
"arfcn": 684}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

health_check.log

{"cpu_times":
 {"iowait": 4694.23,
 "idle": 3089452.32,
 "user": 1786751.62,
 "system": 125489.34},
 "data_vol": 5.5,
 "root_vol": 5.5,
 "cpu_percent": [42.0, 53.0, 35.9, 38.0],
 "mem":
 {"swap_percent_used": 0.0,
 "free": 464707584},
 "queue_sizes": {
 "arfcn_correlator": 0,
 "geo_correlator": 0,
 "scan_results": 0,
 "cgi_correlator": 0},
 "application_uptime_seconds": 32461,
 "event_timestamp": "2017-05-07T06:32:09.816725",
 "scan_program": "health_check"}

The frequency with which these events are generated is determined by the
HEALTH_CHECK_INTERVAL environment variable.

How is this information useful?

If you notice a trend where a metric under “queue_sizes” is always-increasing,
you may have a failed processing thread. Correlate this with the events coming
from heartbeat.log. Look for the absence of a heartbeat event for the
corresponding thread). If you’ve confirmed that a thread has failed, the
fastest fix is to just restart the sensor. If you can get a traceback for the
thread failure, please submit it as an issue at
https://github.com/sitch-io/sensor/issues/new.

heartbeat.log

{"heartbeat_service_name": "MainThread", "event_timestamp": "2017-05-07T06:32:09.815061", "scan_program": "heartbeat"}
{"heartbeat_service_name": "kalibrate_consumer", "event_timestamp": "2017-05-07T06:32:09.815243", "scan_program": "heartbeat"}
{"heartbeat_service_name": "arfcn_correlator", "event_timestamp": "2017-05-07T06:32:09.815323", "scan_program": "heartbeat"}
{"heartbeat_service_name": "decomposer", "event_timestamp": "2017-05-07T06:32:09.815391", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gsm_modem_consumer", "event_timestamp": "2017-05-07T06:32:09.815456", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geoip_consumer", "event_timestamp": "2017-05-07T06:32:09.815520", "scan_program": "heartbeat"}
{"heartbeat_service_name": "writer", "event_timestamp": "2017-05-07T06:32:09.815584", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geo_correlator", "event_timestamp": "2017-05-07T06:32:09.815648", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gps_consumer", "event_timestamp": "2017-05-07T06:32:09.815711", "scan_program": "heartbeat"}
{"heartbeat_service_name": "cgi_correlator", "event_timestamp": "2017-05-07T06:32:09.815780", "scan_program": "heartbeat"}

These events are most useful when chasing down thread failure. It doesn’t
happen often, but when it does, you can look at these events as a time-series
and see where one ceases to appear. This is most useful when correlated with
queue sizes as reflected in health_check.log.

kal_channel.log

{"site_name": "sitch-site-testing",
 "power": 854930.16,
 "final_freq": "874979084",
 "band": "GSM-850",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "scanner_public_ip": "1.1.1.1",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_program": "kalibrate",
 "arfcn_int": 157,
 "channel": "157"}

scanner.log

{"site_name": "sitch-site-testing",
 "scan_results": [
 {"channel_detect_threshold": "105949.217083",
 "power": "854930.16",
 "final_freq": "874979084",
 "mod_freq": 20916.0,
 "band": "GSM-850",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "base_freq": 875000000.0,
 "device": "0: Generic RTL2832U OEM",
 "modifier": "-",
 "channel": "157"}
],
 "platform": "Unspecified",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "scan_program": "kalibrate",
 "scanner_name": "sitch-site-testing"}

The list of items under scan_results is used by the Decomposer to produce
messages that end up in the kal_channel log file.

sitch_alert.log

{"details": "Primary BTS was 310:260:275:20082 now 310:260:275:42302. Site: sitch-site-testing",
 "type": "Primary BTS metadata change.",
 "id": 110,
 "device_id": "sitch-site-testing"
 "event_timestamp": "2017-05-07T06:28:38.545421"}

	details is a human-readable representation of the event, with details.

	type is a human-readable description of the alert type. For a list of
supported event types, look in the __init__ section of
http://sensor.readthedocs.io/en/test/_modules/sitchlib/alert_manager.html#AlertManager

	id is an ID that maps to a specific event type. This is meant to simplify
integration with SIEM and log management systems.

	device_id is the device ID (see device configuration environment vars)

	event_timestamp is generated when the alert is detected.

sitch_init.log

{"evt_data": "T-Mobile",
 "evt_type": "registration",
 "evt_cls": "gsm_consumer",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "\r\n | OK\r\n | ATV1Q0&V \r\r\n | DEFAULT PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n| +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | USER PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n |+CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL:0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | ACTIVE PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR:0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | OK\r\n",
"evt_type": "device_config",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "IMSI_GOES_HERE",
"evt_type": "sim_imsi",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

These messages are only generated when the application starts.

	registration records the cell service provider, according to the GSM modem.

	device_config dumps the profiles in use from the GSM modem.

	sim_imsi records the IMSI from your cell modem’s SIM card.

 _static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Sitch Sensor’s documentation!

 		
 Sensor Environment Variables

 		
 SITCH Sensor Alert Types

 		
 Understanding the Log Data Collected by Sitch

 		
 cells.log

 		
 <cell>

 		
 <arfcn>

 		
 <rxl>

 		
 <rxq>

 		
 <mcc>

 		
 <mnc>

 		
 <bsic>

 		
 <cellid>

 		
 <lac>

 		
 <rla>

 		
 <txp>

 		
 <TA>

 		
 geoip.log

 		
 gps.log

 		
 gsm_modem_channel.log

 		
 <cell>

 		
 <arfcn>

 		
 <rxl>

 		
 <rxq>

 		
 <mcc>

 		
 <mnc>

 		
 <bsic>

 		
 <cellid>

 		
 <lac>

 		
 <rla>

 		
 <txp>

 		
 <TA>

 		
 health_check.log

 		
 heartbeat.log

 		
 kal_channel.log

 		
 scanner.log

 		
 sitch_alert.log

 		
 sitch_init.log

 		
 Event Lifecycle

 		
 Ingestion

 		
 Decomposition

 		
 Correlation

 		
 Transmission

 		
 Reception

 		
 Sensor Troubleshooting

 		
 GSM modem device detection

 		
 Found but undetected TTY

 		
 How to identify if this is your issue

 		
 How to fix this issue

 		
 GPS device not detected (U-Blox7)

 		
 No events in Kibana

 		
 Reference Images

 		
 Connecting the USB TTY cable to the SIM 900 GSM modem

 		
 SITCH Sensor Internal API

 		
 AlertManager

 		
 ArfcnCorrelator

 		
 CgiCorrelator

 		
 ConfigHelper

 		
 Decomposer

 		
 DeviceDetector

 		
 FeedManager

 		
 GeoCorrelator

 		
 GeoIp

 		
 GeoipDecomposer

 		
 GpsDecomposer

 		
 GpsListener

 		
 GsmDecomposer

 		
 GsmModem

 		
 KalDecomposer

 		
 LocationTool

 		
 Logger

 		
 Utility

_static/ajax-loader.gif

_images/sim900_wiring.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

