

Welcome to Sitch Sensor’s documentation!

Version 4.1

Contents:

	Sensor Environment Variables

	SITCH Sensor Alert Types

	Understanding the Log Data Collected by Sitch
	cells.log

	geoip.log

	gps.log

	gsm_modem_channel.log

	health_check.log

	heartbeat.log

	kal_channel.log

	scanner.log

	sitch_alert.log

	sitch_init.log

	Event Lifecycle
	Ingestion

	Decomposition

	Correlation

	Transmission

	Reception

	Sensor Troubleshooting
	GSM modem device detection

	Found but undetected TTY

	GPS device not detected (U-Blox7)

	No events in Kibana

	Reference Images
	Connecting the USB TTY cable to the SIM 900 GSM modem

	SITCH Sensor Internal API
	AlertManager

	ArfcnCorrelator

	CgiCorrelator

	ConfigHelper

	Decomposer

	DeviceDetector

	FeedManager

	GeoCorrelator

	GeoIp

	GeoipDecomposer

	GpsDecomposer

	GpsListener

	GsmDecomposer

	GsmModem

	KalDecomposer

	LocationTool

	Logger

	Utility

Indices and tables

	Index

	Module Index

	Search Page

Sensor Environment Variables

The SITCH Sensor requires some environment variables to be set in order to operate.

	Environment Variable

	Purpose

	CGI_WHITELIST

	(Optional) List of trusted CGIs.

	FEED_RADIO_TARGETS

	(Optional) Radio types to target for feed ingestion.

Defaults to GSM

	FEED_URL_BASE

	(Optional) Base URL for Sensor feed.

Defaults to SITCH auto-built public feed

	GSM_MODEM_BAND

	Restrict GSM modem to this band. Options:
(EGSM_MODE | PGSM_MODE | DCS_MODE | GSM850_MODE |
PCS_MODE | EGSM_DCS_MODE | GSM850_PCS_MODE |
EGSM_PCS_MODE | ALL_BAND)

Defaults to ALL_BAND

	GSM_MODEM_PORT

	(Optional) Set the tty for the GSM modem. If unset,
the Sensor will attempt to auto-configure

	KAL_BAND

	Band for Kalibrate to scan. (GSM850 | GSM-R |
GSM900 | EGSM | DCS | PCS)

Defaults to GSM850

	KAL_GAIN

	Gain value for Kalibrate.

Defaults to 60

	KAL_THRESHOLD

	Alarm threshold for Kalibrate channel power level.

Defaults to 1000000

	LOCATION_NAME

	Name of the location for this sensor. No spaces.

	LOG_HOST

	Logstash endpoint.
Formatted like this: hostname:port

	MCC_LIST

	(Optional) List of Mobile Country Codes to ingest
from feed. List is comma-separated: 310,311,316

Defaults to 310,311,312,316

	MODE

	Set to clutch to go into a wait loop on start.
Useful for troubleshooting.

Defaults to full

	NO_FEED_UPDATE

	(Optional) If set, do not attempt to update the feed
on boot.

	STATE_LIST

	Comma-separated list of states for feed ingestion.
California and Texas would be: CA,TX

	VAULT_PATH

	Path to Logstash/Filebeat credentials in Vault.

Defaults to secret/client, which will work with
the demo environment.

	VAULT_TOKEN

	Client token used to retrieve credentials from Vault.

	VAULT_URL

	URL for Vault instance containing Logstash/Filebeat
credentials. Looks like: https://ser.ver.com:8200

	NO_FEED_UPDATE

	If set, do not attempt to update the feed on boot.

	GSM_MODEM_PORT

	(Optional) GSM modem USB-TTY port. This should
be autodetected and not need to be set.
Looks like: /dev/ttyUSB0
See: “Found but undetected TTY ” in the docs

	GPS_DEVICE_PORT

	(Optional) GPS device USB-TTY port. This should
be autodetected and not need to be set.
Looks like: /dev/ttyUSB0
See: “Found but undetected TTY ” in the docs

SITCH Sensor Alert Types

SITCH has a well-defined set of alerts, which are meant to be easy to parse
with a log management or SIEM system.

The alert log message format is defined here:
http://sensor.readthedocs.io/en/test/data.html#sitch-alert-log

The supported message types are listed here (in the __init__ function):
http://sensor.readthedocs.io/en/test/_modules/sitchlib/alert_manager.html#AlertManager

Understanding the Log Data Collected by Sitch

The following sections describe the data for the files found in ‘/data/sitch/log/’.

cells.log

{"scan_results": [
 {"cgi_str": "310:260:275:20000",
 "site_name": "sitch-site-testing",
 "bsic": "16",
 "mcc": "310",
 "rla": 0,
 "lac": "275",
 "band": "ALL_BAND",
 "feed_info": {
 "mcc": "310",
 "lon": "-122.464146",
 "lac": "275",
 "range": 325,
 "lat": "37.776641",
 "mnc": "260",
 "cellid": "20082"},
 "scan_location": "sitch-site-testing",
 "mnc": "260",
 "txp": 03,
 "distance": 534.3820159387475,
 "scan_finish": "2017-05-06T06:25:49.837957",
 "rxl": 20.0,
 "cell": 0,
 "scanner_public_ip": "1.1.1.1",
 "rxq": 0.0,
 "ta": 255,
 "cellid": "20082",
 "cgi_int": 31026027520082,
 "arfcn": 684}
 ...],
 "band": "ALL_BAND",
 "site_name": "sitch-site-testing",
 "platform": "Unspecified",
 "scan_start": "",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-06T06:25:49.837957",
 "scan_program": "gsm_modem"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

geoip.log

{"geometry":
 {"type": "Point",
 "coordinates": [-122, 37]
 },
 "scan_program": "geo_ip",
 "type": "Feature",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

This is in geojson structure, with the addition of an event_timestamp field.

gps.log

{"sat_time": "2017-05-02T06:26:08.000Z",
 "geometry": {
 "type": "Point",
 "coordinates":
 [-122, 37]
 },
 "time_drift": 0.006355733333333334,
 "sys_time": "2017-05-02T06:26:08.381344",
 "scan_program": "gpsd",
 "type": "Feature"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

gsm_modem_channel.log

{"cgi_str": "310:260:275:20082",
"site_name": "sitch-site-testing",
"bsic": "16",
"mcc": "310",
"rla": 8,
"lac": "275",
"band": "ALL_BAND",
"feed_info": {
 "mcc": "310",
 "lon": "-122.123",
 "lac": "275",
 "range": 325,
 "lat": "37.123",
 "mnc": "260",
 "cellid": "20082"
 },
"scan_location": "sitch-site-testing",
"mnc": "260",
"txp": 3,
"distance": 568.12345,
"scan_finish": "2017-05-16T02:21:23.901298",
"event_timestamp": "2017-05-16T02:21:23.901298",
"rxl": 24.0,
"cell": 0,
"scanner_public_ip": "1.1.1.1",
"rxq": 0.0,
"ta": 255,
"cellid": "20082",
"cgi_int": 31026027520082,
"arfcn": 684}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

health_check.log

{"cpu_times":
 {"iowait": 4694.23,
 "idle": 3089452.32,
 "user": 1786751.62,
 "system": 125489.34},
 "data_vol": 5.5,
 "root_vol": 5.5,
 "cpu_percent": [42.0, 53.0, 35.9, 38.0],
 "mem":
 {"swap_percent_used": 0.0,
 "free": 464707584},
 "queue_sizes": {
 "arfcn_correlator": 0,
 "geo_correlator": 0,
 "scan_results": 0,
 "cgi_correlator": 0},
 "application_uptime_seconds": 32461,
 "event_timestamp": "2017-05-07T06:32:09.816725",
 "scan_program": "health_check"}

The frequency with which these events are generated is determined by the
HEALTH_CHECK_INTERVAL environment variable.

How is this information useful?

If you notice a trend where a metric under “queue_sizes” is always-increasing,
you may have a failed processing thread. Correlate this with the events coming
from heartbeat.log. Look for the absence of a heartbeat event for the
corresponding thread). If you’ve confirmed that a thread has failed, the
fastest fix is to just restart the sensor. If you can get a traceback for the
thread failure, please submit it as an issue at
https://github.com/sitch-io/sensor/issues/new.

heartbeat.log

{"heartbeat_service_name": "MainThread", "event_timestamp": "2017-05-07T06:32:09.815061", "scan_program": "heartbeat"}
{"heartbeat_service_name": "kalibrate_consumer", "event_timestamp": "2017-05-07T06:32:09.815243", "scan_program": "heartbeat"}
{"heartbeat_service_name": "arfcn_correlator", "event_timestamp": "2017-05-07T06:32:09.815323", "scan_program": "heartbeat"}
{"heartbeat_service_name": "decomposer", "event_timestamp": "2017-05-07T06:32:09.815391", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gsm_modem_consumer", "event_timestamp": "2017-05-07T06:32:09.815456", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geoip_consumer", "event_timestamp": "2017-05-07T06:32:09.815520", "scan_program": "heartbeat"}
{"heartbeat_service_name": "writer", "event_timestamp": "2017-05-07T06:32:09.815584", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geo_correlator", "event_timestamp": "2017-05-07T06:32:09.815648", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gps_consumer", "event_timestamp": "2017-05-07T06:32:09.815711", "scan_program": "heartbeat"}
{"heartbeat_service_name": "cgi_correlator", "event_timestamp": "2017-05-07T06:32:09.815780", "scan_program": "heartbeat"}

These events are most useful when chasing down thread failure. It doesn’t
happen often, but when it does, you can look at these events as a time-series
and see where one ceases to appear. This is most useful when correlated with
queue sizes as reflected in health_check.log.

kal_channel.log

{"site_name": "sitch-site-testing",
 "power": 854930.16,
 "final_freq": "874979084",
 "band": "GSM-850",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "scanner_public_ip": "1.1.1.1",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_program": "kalibrate",
 "arfcn_int": 157,
 "channel": "157"}

scanner.log

{"site_name": "sitch-site-testing",
 "scan_results": [
 {"channel_detect_threshold": "105949.217083",
 "power": "854930.16",
 "final_freq": "874979084",
 "mod_freq": 20916.0,
 "band": "GSM-850",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "base_freq": 875000000.0,
 "device": "0: Generic RTL2832U OEM",
 "modifier": "-",
 "channel": "157"}
],
 "platform": "Unspecified",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "scan_program": "kalibrate",
 "scanner_name": "sitch-site-testing"}

The list of items under scan_results is used by the Decomposer to produce
messages that end up in the kal_channel log file.

sitch_alert.log

{"details": "Primary BTS was 310:260:275:20082 now 310:260:275:42302. Site: sitch-site-testing",
 "type": "Primary BTS metadata change.",
 "id": 110,
 "device_id": "sitch-site-testing"
 "event_timestamp": "2017-05-07T06:28:38.545421"}

	details is a human-readable representation of the event, with details.

	type is a human-readable description of the alert type. For a list of
supported event types, look in the __init__ section of
http://sensor.readthedocs.io/en/test/_modules/sitchlib/alert_manager.html#AlertManager

	id is an ID that maps to a specific event type. This is meant to simplify
integration with SIEM and log management systems.

	device_id is the device ID (see device configuration environment vars)

	event_timestamp is generated when the alert is detected.

sitch_init.log

{"evt_data": "T-Mobile",
 "evt_type": "registration",
 "evt_cls": "gsm_consumer",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "\r\n | OK\r\n | ATV1Q0&V \r\r\n | DEFAULT PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n| +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | USER PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n |+CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL:0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | ACTIVE PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR:0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | OK\r\n",
"evt_type": "device_config",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "IMSI_GOES_HERE",
"evt_type": "sim_imsi",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

These messages are only generated when the application starts.

	registration records the cell service provider, according to the GSM modem.

	device_config dumps the profiles in use from the GSM modem.

	sim_imsi records the IMSI from your cell modem’s SIM card.

Event Lifecycle

The lifecycle of an event in SITCH begins in the Sensor, and ends with the
user’s (or alert management system’s) consumption. We’ll follow the most
frequent event, the GSM modem scan event.

Ingestion

The Sensor runs the gsm_modem_consumer() function as a thread in runner.py.
This thread produces events from the output of the GSM modem being in
engineering mode. gsm_modem_consumer() wraps the GsmModem class (found in
gsm_modem.py), takes the output from the __iter__() in GsmModem, and places it
into the scan_results_queue FIFO buffer.

Decomposition

The decomposer() function in runner.py is also run in a thread, and as scan
results are placed into the scan_results_queue FIFO, it pulls them out and
decomposes them into individual events, one for each cell. Copies of these
decomposed events (labeled gsm_modem_channel) are placed into the
cgi_correlator_queue, arfcn_correlator_queue, and
message_write_queue FIFO buffers.

Correlation

The cgi_correlator() and arfcn_correlator() functions are run in threads and
consume events from the cgi_correlator_queue and arfcn_correlator_queue
FIFO buffers, respectively. The cgi_correlator() correlates the information
contained in the event with the feed information based on the OpenCellID
database, taking the geolocation of the sensor into account.
If any alarms are produced, they are placed in the message_write_queue.
The arfcn_correlator() function compares the ARFCN in the event metadata with
information contained in the feed based on the FCC license database, taking
into account the geolocation of the sensor.

Transmission

The output() function is run in a thread and listens for events being placed
into the message_write_queue FIFO. It takes the events it finds there and
writes them to disk, appending them to files by event type.

At this point, you have the original scan event, each decomposed channel event,
and any alerts produced, logged on disk in specific files, based on event type.

These events are picked up from disk by filebeat, and transmitted to Logstash,
which runs in the service side of SITCH.

Reception

Logstash splits the information between two data stores. The events themselves
get sent to Elasticsearch, and you can query them with Kibana. Some of the
measurement metadata is sent to influxDB, and can be viewed with Chronograf.

Events with type sitch_alert are sent to Slack by Logstash.

Sensor Troubleshooting

GSM modem device detection

If you’re using a GSM modem that’s not recognized by the device detector,
please add the output from running the ATI command against your GSM modem in
the variable named positive_match in the is_a_gsm_modem()` method, in the
sensor/sitch/sitchlib/device_detector.py file. Then send a pull request so
that everyone can get the benefit of your discovery.

You can do this using the resin.io terminal on the device by doing the following steps.

	Set the environment variable GSM_MODEM_BAND to nope to disable the scanner.

	Identify which TTY port your device is running on. You can find this in the startup logs under the string DeviceDetector: Detected USB devices.

	Run python from the sensors virtual environment

/app/sitch/venv/bin/python

	Create a serial connection to the GSM modem.

> import serial
> port = '/dev/[THE_MODEMS_TTY_SYS_NAME]'
> serconn = serial.Serial(port, 4800, timeout=1)

	Run the following snippet to get the string you need.

> test_command = "ATI \r\n"
> serconn.flush()
> for i in xrange(10):
> line = None
> line = serconn.readline()
> if line is None:
> time.sleep(1)
> pass
> else:
> print("Use this GSM Modem String in your pull request: {0}".format(line))
> serconn.flush()
> serconn.close()

Found but undetected TTY

The DeviceDetector shows it found my GSM Modem or GPS Device by the Configurator does not detect it

How to identify if this is your issue

You will be able to recognize this issue if three conditions are met.

	You are receiving an error that the device is not configured or cannot bind to its socket.

	Your Configurator returns an empty array instead of a USB-TTY device name when it attempts to detect a device.

	Your device detector is detecting these devices

If the device detector cannot find the devices, as the following log message shows, then this is not your issue.

How to fix this issue

To fix this issue you can set the hard-coded environment variable for the device that is not detected.

In the following example the GSM modem is not detected.

> 22.04.17 08:53:27 (-0400) Configurator: Detected GSM modems:
> 22.04.17 08:53:27 (-0400) []
> 22.04.17 08:53:27 (-0400) Configurator: Detected GPS devices:
> 22.04.17 08:53:27 (-0400) [u'/dev/ttyUSB0']

This shows me that the GSM modem was not detected and that my GPS device can be found at ‘/dev/ttyUSB0’.

By looking at my DeviceDetector I can see that I have two USB devices connected. It also gives me the ‘sys_name’ of each device.

Since I know that my GPS device has a sys_name of ttyUSB0 I know that the sys_name GSM device is ttyUSB1.

I can now set the GSM_MODEM_PORT environment variable to point to /dev/ttyUSB1 in the resin.io Environment Variables interface.

(NOTE: for those unfamiliar with python strings it should be noted that the u in front of each quoted value in these example logs is specifying that the string is a Unicode string. You do not want to enter the u in front of /dev/ttyUSB1 when setting your environment variables.)

If you have successfully set the environment variable you will no longer receive an error message.

In the case of the GSM modem you will also see that the following message has replaced the original error.

GPS device not detected (U-Blox7)

The U-Blox7 USB GPS device registers as a ttyACM device. If everything else
(with respect to the sensor hardware stack) is built to spec, the U-Blox7 GPS
will land at /dev/ttyACM0. Set the GSM_MODEM_PORT Sensor environment
variable in resin.io to /dev/ttyACM0. The application on the sensor will
then restart. Open the terminal in resin.io and
tail -f /data/sitch/log/gps.log to confirm that the GPS is correctly
configured and able to get a location fix. You may have to wait for a few
minutes. If this does not work, you can also use the terminal to run
gpsmon to see if gpsd is able to communicate with the device.

No events in Kibana

The SITCH sensor relies on Filebeat to read events from log files and transmit
them to the Logstash instance running in the SITCH service. There are a few
indicators when the transmission process is broken:

	Confirm that log files are being written:

	Confirm that log files are being written at /data/sitch/log/. If your sensor isn’t populating log files, the most likely reason is that the sensor is in a reboot loop due to mis-configuration.

	Check the Device Summary page in Resin, for the affected sensor. If the reason that the sensor isn’t coming online cleanly isn’t celarly explained in the log messages, please reach out in the gitter channel (https://gitter.im/sitch-io/sensor) or open an issue in the sensor project on Github: https://github.com/sitch-io/sensor/issues

	Make sure that the filebeat process is running on the sensor:

	Check using ps ef from the terminal: you should see a line containing: /usr/local/bin/filebeat-linux-arm -c /etc/filebeat.yml. If you don’t, you can try to start the process manually and look for errors printed to stdout.

	Your crypto certs and keys are retieved in the sensor initialization process and dropped at /host/run/dbus/crypto/. You should see three files there: ca.crt, logstash.crt, and logstash.key. If you don’t have those files on your system, there’s a really good chance that your sensor environment variables aren’t set correctly.

	You should confirm that the VAULT_PATH, VAULT_TOKEN, and VAULT_URL environment variables are correct, and that the network path is open between your sensor and Vault.

	You can confirm the network path is open by running this command: openssl s_client -connect VAULT_HOSTNAME:8200. Replace VAULT_HOSTNAME with the DNS name from the output of echo $VAULT_URL, when run in the terminal on the sensor. So if your $VAULT_URL is https://myvault.mydomain.com:8200, the command you should run in the terminal on the sensor is: openssl s_client -connect myvault.mydomain.com:8200.

	An error message containing gethostbyname failure indicates a failure in DNS resolution.

	A message containing connect: Connection refused indicates that the OpenSSL client is unable to connect to the port that Vault is running on, and you need to check your iptables and security groups settings, and confirm that Vault is actually listening on that port.

	You should also confirm that Vault is actually running.

	If the Vault container is stopped and restarted, you will need to unseal the Vault again. See the docs for the demo environment (https://github.com/sitch-io/demo) for details on how to unseal the vault.

	Confirm that Filebeat is processing the log files:

	There’s a registry file managed by Filebeat, located at /data/sitch/log/fb_registry. This file is what Filebeat uses to maintain its place in your log files, in the event it gets restarted. If this file is empty, confirm that the network path to Logstash is open by running this command: openssl s_client -connect ${LOG_HOST} If the connection times out, you should take a hard look at your network ACLs and iptables rules.

	If Filebeat appears to be transmitting events to Logstash and you still don’t see events in Kibana, you can run the logstash container in debug mode by changing the docker-compose.yml file’s setting for services.logstash.image from docker.io/sitch/logstash to docker.io/sitch/logstash:debug. Then, use docker-compose to take your stack down and back up again. This will be very verbose, and can cause a substantial amount of disk space consumption. Don’t leave it like that forever.

	If there is no indication that Logstash is having trouble getting events into Elasticsearch, check that you have an index for logstash built in Kibana.

	Navigate to this URL: https://MY_SITCH_SERVICE_HOSTNAME:8443/app/kibana#/management/kibana/indices , replacing MY_SITCH_SERVICE_HOSTNAME with the hostname of your SITCH service-side environment. If you have an index, you should have events.

	Try adjusting your time window, and confirm that the system clocks in your SITCH service side components are correct.

	Time drift can not only cause the query in Kibana to look weird, but it can cause an SSL connection negotiation failure between the sensor and service.

If none of the above lead you to success, please don’t hesitate to file an issue in the sensor’s Github repository: https://github.com/sitch-io/sensor/issues and/or reach out in the Gitter channel: https://gitter.im/sitch-io/sensor.

Reference Images

Connecting the USB TTY cable to the SIM 900 GSM modem

[image: SIM900 to USB TTY]

SITCH Sensor Internal API

Modules

	AlertManager

	ArfcnCorrelator

	CgiCorrelator

	ConfigHelper

	Decomposer

	DeviceDetector

	FeedManager

	GeoCorrelator

	GeoIp

	GeoipDecomposer

	GpsDecomposer

	GpsListener

	GsmDecomposer

	GsmModem

	KalDecomposer

	LocationTool

	Logger

	Utility

AlertManager

ArfcnCorrelator

CgiCorrelator

ConfigHelper

Decomposer

DeviceDetector

FeedManager

GeoCorrelator

GeoIp

GeoipDecomposer

GpsDecomposer

GpsListener

GsmDecomposer

GsmModem

KalDecomposer

LocationTool

Logger

Utility

Index

cells.log

{"scan_results": [
 {"cgi_str": "310:260:275:20000",
 "site_name": "sitch-site-testing",
 "bsic": "16",
 "mcc": "310",
 "rla": 0,
 "lac": "275",
 "band": "ALL_BAND",
 "feed_info": {
 "mcc": "310",
 "lon": "-122.464146",
 "lac": "275",
 "range": 325,
 "lat": "37.776641",
 "mnc": "260",
 "cellid": "20082"},
 "scan_location": "sitch-site-testing",
 "mnc": "260",
 "txp": 03,
 "distance": 534.3820159387475,
 "scan_finish": "2017-05-06T06:25:49.837957",
 "rxl": 20.0,
 "cell": 0,
 "scanner_public_ip": "1.1.1.1",
 "rxq": 0.0,
 "ta": 255,
 "cellid": "20082",
 "cgi_int": 31026027520082,
 "arfcn": 684}
 ...],
 "band": "ALL_BAND",
 "site_name": "sitch-site-testing",
 "platform": "Unspecified",
 "scan_start": "",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-06T06:25:49.837957",
 "scan_program": "gsm_modem"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

geoip.log

{"geometry":
 {"type": "Point",
 "coordinates": [-122, 37]
 },
 "scan_program": "geo_ip",
 "type": "Feature",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

This is in geojson structure, with the addition of an event_timestamp field.

gps.log

{"sat_time": "2017-05-02T06:26:08.000Z",
 "geometry": {
 "type": "Point",
 "coordinates":
 [-122, 37]
 },
 "time_drift": 0.006355733333333334,
 "sys_time": "2017-05-02T06:26:08.381344",
 "scan_program": "gpsd",
 "type": "Feature"
 "event_timestamp": "2017-05-06T06:25:49.837957"}

gsm_modem_channel.log

{"cgi_str": "310:260:275:20082",
"site_name": "sitch-site-testing",
"bsic": "16",
"mcc": "310",
"rla": 8,
"lac": "275",
"band": "ALL_BAND",
"feed_info": {
 "mcc": "310",
 "lon": "-122.123",
 "lac": "275",
 "range": 325,
 "lat": "37.123",
 "mnc": "260",
 "cellid": "20082"
 },
"scan_location": "sitch-site-testing",
"mnc": "260",
"txp": 3,
"distance": 568.12345,
"scan_finish": "2017-05-16T02:21:23.901298",
"event_timestamp": "2017-05-16T02:21:23.901298",
"rxl": 24.0,
"cell": 0,
"scanner_public_ip": "1.1.1.1",
"rxq": 0.0,
"ta": 255,
"cellid": "20082",
"cgi_int": 31026027520082,
"arfcn": 684}

<cell>

	possible values

	description

	0

	The serving cell

	1-6

	The index of the neighboring cell

<arfcn>

[Absolute radio frequency channel number](https://en.wikipedia.org/wiki/Absolute_radio-frequency_channel_number)

<rxl>

Receive level

The measured signal level shall be mapped to an RXLEV value between 0 and 63, as follows:

	possible values

	description

	0

	less than -110 dBm.

	1

	-110 dBm to -109 dBm.

	2

	-109 dBm to -108 dBm.

	…

	

	…

	

	62

	-49 dBm to -48 dBm.

	63

	greater than -48 dBm.

<rxq>

Receive quality

	possible values

	description

	0…7

	as [RXQUAL](https://en.wikipedia.org/wiki/Rxqual) values

	99

	not known or not detectable

<mcc>

[Mobile country code](https://en.wikipedia.org/wiki/Mobile_country_code)

<mnc>

[Mobile network code](https://en.wikipedia.org/wiki/Mobile_country_code)

<bsic>

[Base station identity code](https://en.wikipedia.org/wiki/Base_station_identity_code)

<cellid>

[Cell id](https://en.wikipedia.org/wiki/Cell_ID)

NOTE: In a 7-item line, cellid is not provided. We set it to 0 to prevent barfing elsewhere.

<lac>

[Location area code](http://www.telecomabc.com/l/lac.html)

<rla>

Receive level access minimum

GUESS: Minimum receiving level permitted to access the system Per: similar AT engineering mode (AT+QENG) command in [M95 AT commands manual](http://eddywireless.com/yahoo_site_admin/assets/docs/M95_AT_Commands_Manual_V12.196112248.pdf)

<txp>

Transmit power maximum CCCH

<TA>

[Timing Advance](https://en.wikipedia.org/wiki/Timing_advance)

health_check.log

{"cpu_times":
 {"iowait": 4694.23,
 "idle": 3089452.32,
 "user": 1786751.62,
 "system": 125489.34},
 "data_vol": 5.5,
 "root_vol": 5.5,
 "cpu_percent": [42.0, 53.0, 35.9, 38.0],
 "mem":
 {"swap_percent_used": 0.0,
 "free": 464707584},
 "queue_sizes": {
 "arfcn_correlator": 0,
 "geo_correlator": 0,
 "scan_results": 0,
 "cgi_correlator": 0},
 "application_uptime_seconds": 32461,
 "event_timestamp": "2017-05-07T06:32:09.816725",
 "scan_program": "health_check"}

The frequency with which these events are generated is determined by the
HEALTH_CHECK_INTERVAL environment variable.

How is this information useful?

If you notice a trend where a metric under “queue_sizes” is always-increasing,
you may have a failed processing thread. Correlate this with the events coming
from heartbeat.log. Look for the absence of a heartbeat event for the
corresponding thread). If you’ve confirmed that a thread has failed, the
fastest fix is to just restart the sensor. If you can get a traceback for the
thread failure, please submit it as an issue at
https://github.com/sitch-io/sensor/issues/new.

heartbeat.log

{"heartbeat_service_name": "MainThread", "event_timestamp": "2017-05-07T06:32:09.815061", "scan_program": "heartbeat"}
{"heartbeat_service_name": "kalibrate_consumer", "event_timestamp": "2017-05-07T06:32:09.815243", "scan_program": "heartbeat"}
{"heartbeat_service_name": "arfcn_correlator", "event_timestamp": "2017-05-07T06:32:09.815323", "scan_program": "heartbeat"}
{"heartbeat_service_name": "decomposer", "event_timestamp": "2017-05-07T06:32:09.815391", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gsm_modem_consumer", "event_timestamp": "2017-05-07T06:32:09.815456", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geoip_consumer", "event_timestamp": "2017-05-07T06:32:09.815520", "scan_program": "heartbeat"}
{"heartbeat_service_name": "writer", "event_timestamp": "2017-05-07T06:32:09.815584", "scan_program": "heartbeat"}
{"heartbeat_service_name": "geo_correlator", "event_timestamp": "2017-05-07T06:32:09.815648", "scan_program": "heartbeat"}
{"heartbeat_service_name": "gps_consumer", "event_timestamp": "2017-05-07T06:32:09.815711", "scan_program": "heartbeat"}
{"heartbeat_service_name": "cgi_correlator", "event_timestamp": "2017-05-07T06:32:09.815780", "scan_program": "heartbeat"}

These events are most useful when chasing down thread failure. It doesn’t
happen often, but when it does, you can look at these events as a time-series
and see where one ceases to appear. This is most useful when correlated with
queue sizes as reflected in health_check.log.

kal_channel.log

{"site_name": "sitch-site-testing",
 "power": 854930.16,
 "final_freq": "874979084",
 "band": "GSM-850",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "scanner_public_ip": "1.1.1.1",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_program": "kalibrate",
 "arfcn_int": 157,
 "channel": "157"}

scanner.log

{"site_name": "sitch-site-testing",
 "scan_results": [
 {"channel_detect_threshold": "105949.217083",
 "power": "854930.16",
 "final_freq": "874979084",
 "mod_freq": 20916.0,
 "band": "GSM-850",
 "sample_rate": "270833.002142",
 "gain": "80.0",
 "base_freq": 875000000.0,
 "device": "0: Generic RTL2832U OEM",
 "modifier": "-",
 "channel": "157"}
],
 "platform": "Unspecified",
 "scan_start": "2017-05-07T06:23:39.482440",
 "scan_location": "sitch-site-testing",
 "scanner_public_ip": "1.1.1.1",
 "scan_finish": "2017-05-07T06:28:38.545421",
 "event_timestamp": "2017-05-07T06:28:38.545421",
 "scan_program": "kalibrate",
 "scanner_name": "sitch-site-testing"}

The list of items under scan_results is used by the Decomposer to produce
messages that end up in the kal_channel log file.

sitch_alert.log

{"details": "Primary BTS was 310:260:275:20082 now 310:260:275:42302. Site: sitch-site-testing",
 "type": "Primary BTS metadata change.",
 "id": 110,
 "device_id": "sitch-site-testing"
 "event_timestamp": "2017-05-07T06:28:38.545421"}

	details is a human-readable representation of the event, with details.

	type is a human-readable description of the alert type. For a list of
supported event types, look in the __init__ section of
http://sensor.readthedocs.io/en/test/_modules/sitchlib/alert_manager.html#AlertManager

	id is an ID that maps to a specific event type. This is meant to simplify
integration with SIEM and log management systems.

	device_id is the device ID (see device configuration environment vars)

	event_timestamp is generated when the alert is detected.

sitch_init.log

{"evt_data": "T-Mobile",
 "evt_type": "registration",
 "evt_cls": "gsm_consumer",
 "event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "\r\n | OK\r\n | ATV1Q0&V \r\r\n | DEFAULT PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n| +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | USER PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n |+CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL:0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR: 0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | ACTIVE PROFILE\r\n | S0: 0\r\n | S3: 13\r\n | S4: 10\r\n | S5: 8\r\n | S6: 2\r\n | S7: 60\r\n | S8: 2\r\n | S10: 15\r\n | +CRLP: 61,61,48,6\r\n | V: 1\r\n | E: 1\r\n | Q: 0\r\n | X: 4\r\n | &C: 1\r\n | &D: 1\r\n | +CLTS: 0\r\n | +CREG: 0\r\n | +CGREG: 0\r\n | +CMEE: 0\r\n | +CIURC: 1\r\n | +CFGRI: 2\r\n | +CMTE: 0\r\n | +CANT: 0,0,10\r\n | +STKPCIS: 0\r\n | +CMGF: 0\r\n | +CNMI: 2,1,0,0,0\r\n | +CSCS: \"IRA\"\r\n | +VTD: 1\r\n | +CALS: 1\r\n | +CHF: 0\r\n | +CAAS: 1\r\n | +CBUZZERRING: 0\r\n | +DDET: 0\r\n | +MORING: 0\r\n | +SVR: 16\r\n | +CCPD: 1\r\n | +CSNS: 0\r\n | +CSGS: 1\r\n | +CNETLIGHT: 1\r\n | +SLEDS: 64,64,64,800,3000,300\r\n | +CSDT: 0\r\n | +CSMINS: 0\r\n | +EXUNSOL: 0\r\n | +FSHEX: 0\r\n | +FSEXT: 0\r\n | +IPR:0\r\n | +IFC: 0,0\r\n | +CSCLK: 0\r\n | \r\n | OK\r\n",
"evt_type": "device_config",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

{"evt_data": "IMSI_GOES_HERE",
"evt_type": "sim_imsi",
"evt_cls": "gsm_consumer",
"event_timestamp": "2017-05-06T06:25:49.837957"}

These messages are only generated when the application starts.

	registration records the cell service provider, according to the GSM modem.

	device_config dumps the profiles in use from the GSM modem.

	sim_imsi records the IMSI from your cell modem’s SIM card.

 _static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Sitch Sensor’s documentation!

 		
 Sensor Environment Variables

 		
 SITCH Sensor Alert Types

 		
 Understanding the Log Data Collected by Sitch

 		
 cells.log

 		
 <cell>

 		
 <arfcn>

 		
 <rxl>

 		
 <rxq>

 		
 <mcc>

 		
 <mnc>

 		
 <bsic>

 		
 <cellid>

 		
 <lac>

 		
 <rla>

 		
 <txp>

 		
 <TA>

 		
 geoip.log

 		
 gps.log

 		
 gsm_modem_channel.log

 		
 <cell>

 		
 <arfcn>

 		
 <rxl>

 		
 <rxq>

 		
 <mcc>

 		
 <mnc>

 		
 <bsic>

 		
 <cellid>

 		
 <lac>

 		
 <rla>

 		
 <txp>

 		
 <TA>

 		
 health_check.log

 		
 heartbeat.log

 		
 kal_channel.log

 		
 scanner.log

 		
 sitch_alert.log

 		
 sitch_init.log

 		
 Event Lifecycle

 		
 Ingestion

 		
 Decomposition

 		
 Correlation

 		
 Transmission

 		
 Reception

 		
 Sensor Troubleshooting

 		
 GSM modem device detection

 		
 Found but undetected TTY

 		
 How to identify if this is your issue

 		
 How to fix this issue

 		
 GPS device not detected (U-Blox7)

 		
 No events in Kibana

 		
 Reference Images

 		
 Connecting the USB TTY cable to the SIM 900 GSM modem

 		
 SITCH Sensor Internal API

 		
 AlertManager

 		
 ArfcnCorrelator

 		
 CgiCorrelator

 		
 ConfigHelper

 		
 Decomposer

 		
 DeviceDetector

 		
 FeedManager

 		
 GeoCorrelator

 		
 GeoIp

 		
 GeoipDecomposer

 		
 GpsDecomposer

 		
 GpsListener

 		
 GsmDecomposer

 		
 GsmModem

 		
 KalDecomposer

 		
 LocationTool

 		
 Logger

 		
 Utility

_static/ajax-loader.gif

_images/sim900_wiring.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

